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ABSTRACT

The first order perturbation technique igasticated as a tool for measuring the dynamical significance of a change in

a background flow. The focus is on estimating the change in the behavior of the linear disturbance operator as mani-
fest in both the most rapidly growing normal modes as well as initial disturbances that amplify the most over finite
time intenals (also knan as singularectors). The notion of a “small change” to aflcan be made more precise by
requiring, for instance, that the changes in the flow’s stability properties be accurately estimated using first-order per-
turbation theory. The perturbation theory updates of the eigen- and singular values are economical to compute, thus
making this determination feasiblees in a practical setting. Furthermore, a simple refinement of the basic algorithm

enables an efficient updating of the singular vectors as well.

The technique is illustrated and tested fora fiaving a substantial number ofglees of freedom, the global 250mb

flow during northern hemisphere winter represented in a T31 spectral space. A complete generalized barotropic sta-
bility analysis of the observed long-term mean 250mb flow is performed first. Various alterations to the flow are then
considered, and the perturbation technique is applied to estimate both the asymptotic and finite-time stability of the
altered flows. Finally, the accusacf these estimates is checkaginst the complete stability analyses of the altered

flows, and an assessment is made of what a “small change” is for these cases.

It is shown that in many cases the perturbation theory estimates of the stability changes are accurate enough over a
sufficiently lage parameter range to be of practical use. Applications to the problems of: (1) anticipaditions in

forecast skill associated with day-to-dayriations in flav stability; and (2) anticipating the regbnce and robustness

of individual normal modes are discussed. The latter problem is closely related to the concept of pseudospectra, and

perturbation theory can be used to estimate their coarse details.



1 Introduction

The \alue of an atmospheric model is ultimately determined by its ability te sara proxy for the real atmosphere.
Indeed, the underlying premise of many hypothetical model experiments is that the results are applicable to some
aspect of the real atmosphetg, to some spatial or temporafien of the real atmosphere’s statistics. Accordingly,
model validation is one of the more important components of any modeling effort, yet it is often the least objectively

determined measure of a model.

The simplest model validation is done using gross statistical measures. For instance, an assessment of a model’s per-
formance in simulating present-day climatology is typically made by comparing mean flow or variance maps pro-
duced by the model with their observed counterparts. This provides the investigator with only a crude indication,
however, of whether the model simulation is a “reasonable” facsimile of the observed climatology. A more precise
determination of the significance of the differences requires the use of some objective method. If one is interested in
the diferences in the mean fatself, one could use standard statistical techniques to determine ifférerties are
statistically significant. But perhaps one is also interested in how the change in the mean flow alters the evolution of
perturbations to that flow. In other words, does a perturbation evolve in a significantly different manner on the model
climatology compared to the observed climatology? In this latter case, we are interested in whether the differences

aredynamicallysignificant.

The distinction between statistical and dynamical significance can be clarified by consideringulegfdljgpothet-

ical experiment. Suppose thefdience in the basic state is such that it translates to a simple muliipliclaginge in

the linear operatol,, that goerns the linearized dynamics of the system. It can barsfar this simplified case that

the eigenfunctions df do not change; only the eigenvalues scale by the multiplicative factor. Since the linear eigen-
function evolution would remain unchanged, from a dynamical perspective the basic state modification would be
irrelevant. Therefore, the difference could conceivably be made statistically significant and yet remain dynamically

insignificant.

Although somewhat contrived, the above scenario illustrates the difficulty of assessing the dynamical impact of a
change in the basic state. A large change could conceivably have no effect on the linearized dynamics, while con-
versely a relatively small change in a particular location of the basic state could lead to significantly different pertur-

bation evolution. One of the main points of this paper is to address this difficulty and suggest a dynamical definition



for basic flow changes: we consider a basic state modification to be large from a dynamical perspective if it substan-

tially alters the stability properties of the associadtexperator.

An efficient, objective method to determine the dynamical significance of basic state differences is clearly needed.
This paper will demonstrate that the first-order perturbation techrégeefor exampléVilkinson, 1965; Norttet

al., 1982; Penland and Sardeshmukh, 1995}iges such a tool. The technique can also be used to addoesthex
common questions arising in a stability analysis:

(i) how reliable or sensitive are the stability analysis results?
(i) how meaningful are the individual modes?

The computational effort required to ans\igrand(ii) in an applied setting will also be discussed.

To fix ideas, consider the archetypal linear system,

%x = Lx +f )

wherex = x(t) is the state vector of the systénig a matrix representing the relevant discretized linear operator

andf = f(t) is atime-dependent forcing function vector. Our interest is in howdperator behaves as perturba-

tions are made to it. In this sense, we use the term “behavior” to refer to the sensitivity or robustness of the results of
a stability analysis df. This sensitivity may arise not only from the nature of the problem, but also due to inherent
uncertainties in the linearizationofFexample, because of errors in the formulation of a model, or simply nofikgo

the correct basic state to linearize about, the precise definition of the openzdgrnot be well known. Say

L =L+5L )

whereLl is the estimate of the true operatokKnowing how the changdL  affects the properties and behavior of

the truel is at least as important as the results of the analysﬁs on itself.

Traditionally, much emphasis has been placed on the asymptotic stability properties of (1) as governing its behavior.

For instance, exponential (free) solutions of the linear equation (1) are sought, resulting in an eigenvalue problem,

Luj = Ay, ®)

for the complex eigenvectay;  and eigenvaiye= (o +iw;) . If the opelatwself-adjoint the eigenvectors

and eigenvalues are pure real, and the eigenvectors can be normalized to form an orthonormal spectral basis. In this



situation eigenspectra do, iact, provide aluable information about the timeadution of perturbations gerned by
(). Furthermore, it can be shio that a chang8L of a given size can be used to determine a bound on the change in

the eigenvalues, without the need to repeat the complete eigenvalue calculation.

Unfortunately for mary meteorological andyrodynamical applications theoperator in (1) imot self-adjoint. The
associated eigenvectors do not form an orthogonal spectral basis by themselves. For these non-normal operators
eigenanalysis may fail to give an accurate indication of the behavigraoid as discussed later, may even be decep-

tive. Also, to our kneledge there is no simple method to determine a bound on the change in thaleégegiven a

changedL in a non-normél

As alluded to préously, the case wheln is self-adjoint simplifies the assessment of the significance of the basic state
change. The size of avgin change in the matrix operator can be used to find a bound on the change possible in a par-
ticular stability parameter(g.,the leading eigenvalue). Discussion of various aspects may be found in the classic

work of Wilkinson (1965), and in a meteorological context in Netthl.(1982).

More recentlyPenland and Sardeshmukh (1995, hereafter PS8 discussed the extension of first-order perturba-

tion theory to non-normal systems anatibmay be used to determine the modificationsjtay, andy; caused by

a small change in the basic state.

To help understand questiii), consider the forced problem (1) wilit) = exp(ut)f, . The general solution may

be written,

x(1) = exp(tL)[xo— (MI—L) "] + exp(ut) (uI-L) 't @
wherex (0) = x, | is the identity matrix anqt L] C . As is well known, the solution, (4), will exhibit resonant
behavior ifu happens to be an eigenvalud.dfi.e., u O A(L) ). But it will also exhibit resonant-like behavior if the
guantity (uI—L)_1 is large in some sense. Hence valugsaf C for vunldhL)_ln is large, |vtiere is any

chosen norm, are also important. In otherds, it is equally meaningful to askviagjuickly ||(uI—L)_1|| decays way
from an eiger&lue. If the decay is slg the emphasis on the eigenmodes of the problem may be urdglyesated.

To address this issue, one can appeal to the notigseoflospectrar spectral portraity(see, for example, Trefethen



et al. 1993). Alternatively, if a sufficiently “small” change is considered, first-order perturbation theory can be used

for substantial computational savings.

Finally, it should be noted that the implementation of the first-order perturbation theory need not be computationally

inefficient even for problems that require updating eigenvectors. While it is true that the updating of eigenvectors via

perturbation theory is a(ﬂ(N3) operation (where N is the rank of the matrix), some operators permit a simplification
to the basic algorithm that greatly diminishes the number of floating point operations required, and without significant
loss of accuracy. This result makes feasible the possibility of using perturbation theory to determine certain stability

properties on a daily basis in an inexpensive and efficient manner.

The paper is organized as follows. Section 2 reviews the formulation of the first-order perturbation theory formula-
tion, drawing on the previous work of Nortt, al (1982) and PS95. In the following section, results for two hypo-

thetical cases are presented, illustrating how well the theory works in a system with a large number of degrees of
freedom. Section 4 addresses computational efficiency considerations, and introduces a refinement of the basic algo-
rithm that works well for some problems. In section 5 we discuss the concept of pseudospectra and how it relates to

this work. A summary and concluding remarks are presented in section 6.

2 Governing Equations

In this section the perturbation technique is illustrated for a simple system with a substantial number of degrees of
freedom — the barotropic vorticity equation. A more complete description of the linearization and notation may be

found in Borges and Sardeshmukh (1995). For convenience, a brief version follows.

The barotropic vorticity equation may be written

0
Katvy0) = F ®

where( is the absolute vorticity andy,  is the horizontally nondivergent wind. Separating variables into a time-inde-

pendent basic state and a time-dependent perturbation, equation (1) becomes,
07+ 0oy + Vg (= F—DeVy{=F'=0
S0+ 0oV + 0oV (= F =Yy 0 =F'= ®)

where quadratic terms in perturbation amplitude agéeted, and we va made the “SWB” simplifying assumption



in setting the rhs of (6) to zero as described in Borges and Sardeshmukh (1995). Expanding in a truncated series of

spherical harmonics, this may be cast into an ordinary differential equation,

gie = Le (7)

The operaton,, is determined at T31 truncation giving a real matrix of rank N = 1023.

Exponential solutions to the linear equation (7) are sought, resulting in the eigenvalue problem,

LUJ' = )\jUj (8)
for the complex eigenvectay;  and eigenvalye= (0 +iw;) . Sineein general not self-adjoint, we consider
the eigenvalue problem for the adjoint,

ty. = .

LTy; = Ay, €)

where the asterisk denotes a complex conjugate and the adjoint opérator  is defiped byl = D_Tyj, uC

for a suitable scalar produ€t,s[C . We will use a scalar product proportional to rotational kinetic energy,

7 0l 2m—. . [
o, g = J’_chosedetznfo Of ng)\D (10)

The importance of the adjoint vectars s that they form a bi-orthogonal set with the eigeryectars

0y, y b= 6j-k. The complex eigenvectu;rj , may be expressed in geographical space in the form,
. ot
u; = [gj()\,e)coswjt+l;)j()\,9)smwjt]e : (12)

whereg; andy; are normalized functions of longitude and latitude that are orthogonal to each otheriie.space,

F:]

~Jab,JDEO, @J’ajmz 1>0b

2.1 Perturbation Theory

Perturbation theory permits one to determine bpwy;, & andb; are modified as the basic state is changed. The der-

ivation below closely follows that of PS95.

SettingL = L +0L, Aj = Aj+0A;, y; = y;+dy; in (8) and neglecting quadratic perturbation quantities one



obtains,
(L—A;Ddy; = (8A;1-3L)y, (13)
Expandingégj in the (presumably complete) set of eigenfunct{ang,

provided by the numerical discretization
gives

Y % CikHx (14)

where the summation is over all eigenmodes excepihtbigenmode. This exclusion is permissible because

(L+cj)y; = QJ- is still an eigenvector df, (the normalization of the eigegctors is irreleant up to this point) and

a j can be substituted fcuj anywhere above without loss of generality. Substituting (14) in (13) yields,

(L=A)1) Y g = (3A1-3L)y;

(15)
K#
Forming the inner product of (15) witl),  gives
O (L=A1) % Gl 0= Dy (BAj1=3L)y,C (16)
k# j
Forn =j, (16) reduces to
0= sz,(é)\jl—éL)ng (17)

since the eigemctors and their adjoints can be constructed as a bi-orthonormal §etlaimthe summation appear-

ing in the lhs of (16). Alternately one could appeal to the Fredholm altekmgtas in PS95, to obtain the same result

without explicit use of the expansion (14).

Therefore, from (17) the change in the eigenvalue is,

K

_ bypoty

where the chosen normalization satisfigs, u =1 and a perturbation in the basi(wlcsayéz , directly translates

to a chang@®L in the linear matrix operatofhe change in a particular eigentor may be determined by solving for

the expansion coefficientg; in (16). Substituting (18) into (16), using the bi-orthonormal property and simplifying



one obtains,

(Aj=An)cy = Dk, 8Ly b n# | (19)

Thecg;; coefficients are implicitly determined upon normalization of the updated eigenuectowy ; + ng .

3 Results

In this section, a set of basic states is systematically varied and analyzed using eigenanalysis and singular value
decomposition (SVD). The perturbation theory estimate of the change in the stability properties is then compared
with the change determined by solving the full eigenvalue or SVD problem using standard matrix algorithms. The
basic state changes are characterized by a single parameter. The parameter range for which the perturbation theory
fails can be used to indicate when the corresponding change in the basic state can be considered dynamically signifi-

cant.

The performance of the perturbation technique in capturing structural changes is assessed using both a global and
local measure. The global measure is the “maximum pattern correlation”, defined as in Borges and Sardeshmukh
(1995, page 3787). The local measure is a normalized maximum local erronipdhnsien coefficient vector of the

eigenvector, defined as

18—l &l (20)
where
u=_=Ua
(21)
l~J(est) = Ua

and| |, is the infinity norm [x]|, =max|x| ). Hert) is the eigenbasis matrix of the original nhattixis the
i

spectral coefficient vector of the actual updated eigenmod@(%sr?dis the perturbation estimate of it. Note that the
difference in the numerator of (20) is obtained after rota;fﬁ?j’ by @haxWhere the phasg, ,«is determined by the

maximum pattern correlation betwegn aﬁ?fo (see Borges and Sardeshmukh, 1995).

3.1 Data source

The two data sources used for this investigation are the initialized analyses of horizontal wind obtained from the



European Centre for Medium Range Weather Foreda€s1{VF and the National Meteorological CentBiC).

The ECMWHFdataset consists of 13 years (1979 through 1991) of global winter (DJF) data at 250kl BdF

dataset is based on 27 years (1965 through 1991) of Northern Hemisphere 250mb data and 14 years (1978 through
1991) of Southern Hemisphere data. The vector wind components were converted to scalar fields of vorticity and
divergence and expanded in a T31 spherical harmonic basis, as in Borges and Sardeshmukh (1995). The climatologi-

cal wintertime rotational flows used subsequently are defined as the time-average vorticity.

Figures 1a and 1b show the streamfunction and isotach representatioh bfGladECMWFclimatologies,

respectivelﬁr. The experiments discussed in the following section evaluate the success of the perturbation method in
estimating the eigenvectors and singular vectors dE@WFgiven those of thBIMC climatology. The degree of

success can be used to assess whether teeedifes, which appear minor to tlyeeare in &ct dynamically insignif-

icant. In Section 3.3 the zonally asymmetric component dflME€ climatology is systematicallyavied, and the per-

turbation method is used to estimate the changes to the stability properties of these altered backgso&iglfies

1c and 1d show two examples for the cases when the climatological nonzonal component is decreased and increased

by 20%, respectively.

3.2NMC and ECMWFblending experiment

The first set of experiments was designed to determine the significance of the differences beMM& it

ECWMFanalyzed DJF climatologies. The global mean rotational kinetic energy of the difference betwéddCthe
andECMWFclimatologies is ~1 K52 The energy of the difference field is nearly equally partitioned between the
hemispheres; 58% of the total energy (O?S'?m is contained in northern hemisphere latitudes.
To determine if these differences are dynamically significant, a blended basic flow was defined as

Zy = (1—V)ZNMC+VZECMWF (22)

and the parametgrvaried between 0.05 and 0.95 in discrete steps.

3.2.1 Eigenanalysis

Figure 2 shws the fractional change in the gith ratec; and frequencw, of the leading eigefalue as a function of

1. A difference map of these climatologies is also shown in Borges and Sardeshmukh (1995).
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y. The fractional change in the growth rate (Fig. 2a) obtained by repeating the full matrix calculation for each basic
state (hatched bars) is captured quite well by the perturbation theory estimate (solid baeskeGothe full matrix
calculation indicates that the fractional change in the frequency (Fig. 2b) undergoes a sign reversal, which is not cap-
tured by the perturbation theory. However, the magnitude of the change is fairly small, an order of magnitude less

than the change in the growth rate.

Figure 3 summarizes the magnitude of the structural changes in the leading eigenvector. The fractional error in the
perturbation estimate (Fig. 3a) isdast for thex-phase (the most emgtic phase) of the eigenmode, and approaches
0.45 near the ECWMF basic statg=0.95. The maximum error in thephase of the eigenmode is less, approaching
0.25 aty=0.95. Figure 3b shows the pattern similarity (at the phase of the maximum pattern correlation) between the
perturbation theory estimate of the structure and that obtained from the full matrix protéhe Fange of consid-

ered, the maximum pattern correlation always exceeds 0.9.

According to Fig. 3b, the perturbation theorgriss well, whereas according to Fig. 3a dris less well. It should be
borne in mind, havever that Fig. 3a emphasizes the maximogal diferences in the eigenmode structures. &n-

clude that perturbation theory succeeds in accurately estimating the overall change in the leading normal mode’s
eigenstructure. Therefore, from the dynamical perspective of the leading eigenmode, the differences between the

NMC andECMWFbasic states should not be considered significant.

3.2.2 Singular value decomposition

The above analysisas repeated for the singulawe decomposition @& = exp(tL) , far= 3 days. The singular
value decomposition is equivalent to eigenanalysis of the self-adjoint mag#speslt) exp(tL) and

exp(tL)exp(TL™) . We obtain the complete singular value decomposition using a standard matrix technique avail-

able via the NetLibsoftware repository.

Figure 4 shas the fractional change in the singulafues as a function §f The perturbation estimates decrease the
singular alue by about 20% as tB®CMWHFbasic state is approached, nearly the same asvhatly the full matrix
computation of the singulaaiues (~17%). The perturbation estimate systematicediyestimates the actual change

for all y.

2. The NetLib repository is accessible via the World-Wide Web through the WRp;/Avww.netlib.org.
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The structural changes are summarized in Fig. 5, in the same format as in Section 3.2.1. The normalized error (Fig.
5a) is less than that for the leading normal mode in Fig. 3g0A85, the error is about 19%, compared to ~45% for
thea-phase leading normal mode. The pattern correlation between the estimated leading singular vector and the
actual singular vector exceeds 0.96 foiyatigain better than that in Fig..3Bor this self-adjoint system, the pertur-

bation estimates are more accurate compared to the non-self-adjoint system.

Again, perturbation theory succeeds in accurately estimating the change in the leading singular value and singular
structure. As such, the tBfences between tiNMC andECMWFbasic states, from the dynamical perspeoctif the

leading singular vector, are not significant.

3.3 Zonally asymmetric experiments

The second set of experiments was designed to examine the significance of the nonzonal component of the basic
state. A set of basic states was constructed by systematically increasing the magnitude of the nonzonal component

while keeping the zonal mean fixea,,
7 17 zU
ZG - [ZNMC] +GZN|\/|C (23)
where square brackets denote the zonal mean, the asterisk the departure from the zonal mean, and the igarameter

varied between 0.6 and 1.@rFeference, the global mean rotational kinetic gyef the diference of théiMC and

ECMWFbasic states (1 ?9'2), discussed in Section 3.2, is equivalent taiaralue of aboutl + 0.2 . The energy of

this difference fieldq ,_, ,— {yyc

), however, is not as equally partitioned between the hemispheresZIigr the

basic state (Fig. 1d), more than 80% of the global mean rotational kinetic energy 3% 7snsontained in the

Northern Hemisphere. Furthermore, the local wind maxima inZtIgg

16— Cyme ) difference field (not shown) are

nearly double those of tHECMWF - NMCdifference field.

3.3.1 Eigenanalysis

Figure 6 shas the fractional change in the gith rate and frequepof the leading normal mode as a functiomof
The actual change in the grth rate (hatched bars, Fig. 6a) is asymmetric aboitO {.e.,the change fax = 1.3 is

greater than that far = 0.7) and levels off at aboat= 1.4. The first order perturbation theory is unable to account

for these features. The perturbation estimates are reasonably accurate for<0173, and are slightly better far>

12



1 due to the asymmetry noted previously. &or 1.5, the perturbation theory predicts@(i) change, while the

actual change is about 0.6.

The changes in the leading eigelue’s frequengcare shan in Fig. 6b The actual changes in the frequelttatched
bars) are again asymmetric abaut 1.0, but ne in the opposite sense. Consequetttlg perturbation theory result

for a = 0.7 is better than that far= 1.3. In contrast to the growth rate, the fractional changes in frequency remain

below 0.5 fora in the range 0.2 a < 1.6.

The perturbation estimates of the leading eigenmode structure (Fig. 7) are reasonably accuratenfarl04& The
maximum pattern correlation (Fig. 7b) for this range @xceeds 0.8. The normalized change in the expansion coef-
ficient vector for the-phase of the leading eigenmode (Fig. 7a, solid bars) is at 0.5 or belowfo0&2..5. The

degradation in the maximum pattern correlation is primarily due to tgerdarror in the less emggticb-phase of the

leading eigenvector, particularly far> 1.4.

3.3.2 Singular value decomposition

The fractional change in the leading singular valuest fiorthe range 0.2 a < 1.6 is shown in Fig. 8. As in the

experiment, the perturbation estimates of the singular values are better than the leading eigenvalue over the entire
range shown. Fax = 1.4 and above the perturbation theory predict®@n change to the singular value, a change

that is also evident in the singular value obtained from the full problem.

The structural changes to the leading singular vector as a functioarefsummarized in Fig. 9. The maximum pat-

tern correlation exceeds 0.8 foiin the range 0.8 o < 1.3 (Fig. 9b). The normalized error in the expansion coeffi-

cient vector (Fig. 9a) varies from 0.35 for= 0.8 to 0.5 foo = 1.3.

4 Computational considerations

Perturbation theory updates of the eigenvaludsarke obtained using (18), while updates of the eigenvectors are
obtained using (14) and (19). The eig&lue updates are computationallyxpensie; for instance, a straightfoand
implementation of the algorithm is about a factor of two faster than the standard SVD solvers available through the

NetLib software repository. At first sight, the eigenvector updates are not inexpensive. In general, one must perform

the sum in (14)eer the entire set of eigenfunctions. This become3(&I) operation, which can be computationally

13



expensive. However, based on inspection of maps of the expansion coefficient amplitude, a simplification of (14) is
possible that works well for updating the singular vectors. For example, Fig. 10 shows the average amplitude along
each diagonal of the right singulagctor expansion cd&fient matrix as a function of the diagonal irdle The nota-

tion is such that the average along the main diagonal is labelled by thindex, and positive or negative diagonal
indices correspond tavarages along diagonals in the upper right weldeft triangular portion of the matrix, respec-
tively. The expansion cdi&fient matrix is sparse, with nonglagible amplitude in only a fg tens of elements about

the main diagonal. Figure 10 suggests that limiting the summation in (14) to & temuljt the original singulaee-

tors,i.e.,
) min(N, j+ J)
&Jj = z CikYy (24)
k = max1,j-J)
K# j
will give a very good approximation of the actual perturbation theory estimag; of . Accordingly, we have recom-

(10)

puted the ten leadingu;'s  using this simplification wit10 and found that the correlation betweay; and

6g(1022) (the original perturbation estimate obtained ugnt022) exceeds 0.98 in all cases. Given the substantial

computational savings and minimal loss of accuracy, this simplification may prove useful in obtaining preliminary

estimates of the change for more complex operators with a large number of degrees of freedom.

5 Discussion

We have shown how first-order perturbation theory may be used to assess the dynamical significance of a change to
the basic state, by examining to what extent the change in its stability properties can be captured by perturbation the-
ory. If the change is not accurately captured by the perturbation theory, one may regard the basic state change as

dynamically significant.

Perturbation theory can also be useful in generating “poorsiaseudospectrarhe pseudospectrum of an operator
L extends the concept of its eigenspectringl,) , defined as the set of all eigexvaltiescomplex plan€. In

an analogous manner, th@seudospectra (L) &f are defined as,
AL = {z0C @-0ze?
(L) ={zOC: |(z1-L) =€ 7} (25)

with the convention thaﬂ(zl - L)_l” = o EOA(L) asin Trefethen (1992). In a forced problem like (1) with

14



solution (4), apparent resonant-like behavior of the system may be obsdmekj—iL)_l" is large, even though it
may be far from resonance in the traditional sense. The pseudospectrum provides valuable information in such sys-
tems by delimiting the region of particular valuegiaf the complex plane where a large response to forcing should

be anticipated. Thus, eigenanalysis alone of non-normal operators may fail to give an accurate indication of the

behavior of the. operator, and worse, can be misleading to the investigator.

As noted by Trefethen (1992), it can be shown that an equivalent definitlgsiglof is,
Ne(L) = {zOC: zOA(L +8L) with |[8L| <€} (26)

Viewed from this perspective, the pseudospectrum can be used to visually reveal which eigenvalues are sensitive to

changes irL. For self-adjoint system#\.(L) is described by the union of circles of radisut each eigenvalue.

In non-normal systems, however, the shapagt.) can differ substantially from this simple form, implying that a

relatively small change in the basic state could lead to a much larger change in the eigenvalue under consideration.
Thus, in an initial value problem as well as the forced problem the investigator must be wary of overemphasizing the

importance of a specific normal mode.

The pseudospectrum is avgerful analysis tool, it in practice the computation Af can be prohibitie. In principle,

the determination of the resolvent norikzl - L)_1|| , must be repeated for each ipoiné complex domain of

interest. Howeverfrom (26) the relation to the perturbation theory discussed here is readily apparent. When the oper-
ator is not degenerate, information akin to pseudospectra may thus be obtained by appealing to perturbation theory.
Unlike the fullA; computation, the approximate obtained via the perturbation technique may be computationally

feasible for a wider range of problems.

6 Summary and Concluding Remarks

Perturbation theory is a useful tool for objectively measuring the dynamical significance of a change in a basic flow.
Our definition of dynamical significance is based upon the change in thedsaifdhe linear disturbance operator as
manifest in the most rapidly growing normal modes and singular vectors. The notion of a “small” or dynamically
insignificant change to a flow can be made more precise by requiring, for instance, that the changes in the flow’s sta-

bility properties be accurately estimated using first-order perturbation theory. The perturbation theory updates of the

15



eigen- and singularalues are economical to compute, thus making this determination feasiblme practical set-
ting. Our principal findings may be summarized as follows.

» Although the perturbation theory performed well in thpeximents where thdMC climatology was changed
to theECMWFclimatology (.e., the blending experiments), it performed even better in the experiments with
the nonzonal component of thMC climatological flow changed by 20%, where the change was more

noticeablei(e., the a-experiments witln = 1 + 0.2). This illustrates the difficulty in trying to assess the
dynamical significance of basic state differences by visual inspection alone, a task that is better suited to the
perturbation method.

» The perturbation theory prinles useful estimates of the stability parameters for changes to the nonzonal com-
ponent (with fixed zonal mean) of about 20%. For this type of basic state modification, changes greater than
about 30% should be considered dynamically significant for perturbations.

» For some non-degenerate problems, “poor man’s pseudospectra” may be obtained using perturbation theory.

The success of perturbation theory asag v accurately estimate stability properties in a practical settirigusy

depends upon the size of the basic state changes considered. Our experience suggests that a basic state change of

~1nfs?inthe globally seraged rotational kinetic emggris small enough that stability parameter modifications can

be accurately approximated using the perturbation method. If the daily departures from a climatological basic state
(say a seasonal or monthly mean) lie within this limit, the perturbation method can be usedicisraraefl power-

ful method of estimating daily fluctuations of stability properties. This possible use of the perturbation technique is
the subject of ongoing research, and could@itmeneficial to operational centers that compute stability properties on

a routine basis. For example, Buizza and Palmer (1995) recently investigated the daily fluctuations of atmospheric
singular values obtained from the ECMWF Integrated Forecasting System using a Lanczos method. Since singular
vectors bound the maximum possiblewgtto of all perturbations, this approach afying the basic state and comput-

ing the changed singulaestor structure can lead to increased understanding of the mpad&lhtial for error grath

and how that error growth potential varies with time due to the changing background flow.

The perturbation method is also a useful tool for estimating the structural gradient of stability parameters with respect
to the background flow. The structural stability gradient can be used to geographically illustrate the smallest change
(measured by any suitably chosen norm) to a background flow that results in the largest change to a particular stabil-
ity parameter (or linear combination of them). Thus, while the singular value decomposition seeks structures that
grow most rapidly for a given background flow, the structural stability gradient indicates regions of the background
flow where the stability properties of a particular perturbation structure are most sensitive. The computational effort

of the structural stability gradient calculation is greatly reduced by an efficient means of estimating the first order

16



changes of the desired stability parameters. This subject will be investigated in a future study.

7 Acknowledgments

Discussions with our colleagues, especially Dr. C. Penland and Dr. J. Barsugli are gratefully acknowledged.

17



References

Borges, M. D. and MD. Sardeshmukh, 1995. Barotropic Rossby wave dynamics of zonally varying upper-level flows
during northern winterd. Atmos. Sci52, 3779-3796.

Buizza, R. and TN. Palmer, 1995: The singular-vector structure of the atmospheric global circula#amos. Sci.
52, 1434-1456.

North, G. R., T. L. Bell, R. F. Cahalan, andJFMoeng, 1982. Sampling errors in the estimation of empirical orthog-
onal functionsMon. Wea. Rey110, 699—706.

Penland, C. and B. Sardeshmukh, 1995. Error and sensitivity analysis of geophysical eigensyktEiimate 8,
1988-1998.

Trefethen, LN., 1992: Pseudospectra of matrices.Nomerical Analysis 199%ed. D. F. Griffiths and G. A. Wat-
son). Longman, White Plains, NY, 234-266.

Trefethen, L. N., AE. Trefethen, SC. Reddy, and TA. Driscoll, 1993. Hydrodynamic stability without eigenvalues.
Science261, 578-584.

Wilkinson, J. H., 1965The Algebraic Eigenvalue Proble@xford University Press, 662.

18



List of Figures

Figure 1. Examples of the 250mb background flows used in this study, represented by streamfunction and isotachs.
The upper panels siwdthe (aNMC 250mb and (BECMWF250mb climatological fl@s. The lover panels she two
states constructed by modifying the nonzonal component df@ climatology such that (@y=0.8 and (dp=1.2

in (23). Streamfunction is contoured in thin lines at intervals 6A%& throughout. Isotachs are drawn in thick
lines every 15m3, beginning at 30 m&

Figure 2: The relative change in the leading eigenvalue’s (a) growttr eate (b) frequency as a function of the

parametey that blends th&lMC 250mb andECMWF250mb climatologies (see equation (22)). Solid bars corre-

spond to the perturbation theory estimate, and hatched bars to the eigenvalues determined by the full matrix eigenan-
alysis.

Figure 3: (a) The fractional errq@— Q"oo/ lal, of the estimated eigenvector, vghere is the vector of estimated
expansion coefficientg is the vector of expansion coefficients obtained from the full matrix solutipr,.and is

the infinity norm,[x||,, = max |x| . Solid bars correspond to &hphase and hatched bars to thphase of the

eigenvector. (b) The maximum pattern correlation between the eigenvector estimated by perturbation theory and that
obtained from a full matrix eigenanalysis.

Figure 4: The relative change in the leading singular vala® a function of the parameigthat blends th&lIMC
250mb anECMWF250mb climatologies. Solid bars correspond to the perturbation estimate and hatched bars to the
full singular value decomposition.

Figure 5: (a) As in figure 3a, but for the estimated singular vector. (b) The maximum pattern correlation between the
eigenvector estimated by perturbation theory and that obtained from the full matrix eigenanalysis.

Figure 6: The relative change in the leading eigenvalue’s (a) growttr eate (b) frequency as a function of the
parameteo that modulates the amplitude of the zonally asymmetric componentMB£50mb climatology (see
equation (23)). Solid bars correspond to the perturbation theory estimate, and hatched bars to the eigenvalues deter-
mined by the full matrix eigenanalysis.

Figure 7: As in figure 3a, but as a function of the paranseteat modulates the amplitude of the zonally asymmet-
ric component of the NMC 250mb climatology. (b) The maximum pattern correlation between the eigenvector esti-
mated by perturbation theory and that obtained from a full matrix eigenanalysis.

Figure 8: The relative change in the leading singular valea function of the parametethat modulates the
amplitude of the zonally asymmetric component of the NMC 250mb climatology. Shading as in figure 4.

Figure 9: (a) As in figure 5a, but as a function of the pararoeteat modulates the amplitude of the zonally asym-
metric component of the NMC 250mb climatology. (b) The pattern correlation between the leading singular vector
estimated by perturbation theory and that obtained from a full matrix eigenanalysis as a furiction of

Figure 10: The average amplitudg, , of the expansion coefficient matrix elements (see equation (14)) defined by
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E(l/(N_l))Z|CLJ'+||’ >0

¢ =0 ’

%(1/(N+I))z|cj_|,j|, <0
j

(i.e., the average taken along each diagonal). The diagonal averages are shown for the leading singular vector coeffi-

cient matrices obtained in the §gF 0.95 and (bi = 1.3 cases in equations (22) and (23), respectively.
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Figure 10: The average amplitude, , of the expansion coefficient matrix elements (see equation (14)) defined by

E(l/(N - I))§|cj,j sl 120

0
%(1/(1\1 +D)Y[e_y,] 1<0
J

(i.e., the average taken along each diagonal). The diagonal averages are shown for the leading singular vector coeffi-
cient matrices obtained in the ¢gF 0.95 and (bl = 1.3 cases in equations (22) and (23), respectively.
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